UA 858 D · UB 858 D

programmierbare Peripherieschaltkreise der Mikroprozessorsysteme UA 880 D, UB 880 D für den direkten Speicherzugriff (DMA)

Bauform 14

Taktfrequenz: UA 858 D = 4 MHz ($\theta_a = 0...70 \,^{\circ}$ C) UB 858 D = 2,5 MHz ($\theta_a = 0...70 \,^{\circ}$ C)

- Ermöglicht den direkten Datentransfer zwischen verschiedenen Speicherbereichen oder zwischen Peripheriegeräten und dem Speicher.
- Liefert als programmierbarer Einkanal-Schaltkreis alle Adressen-, Zeitund Kontrollsignale für den Transfer von Datenblöcken zwischen zwei Toren des UA 880 D-, UB 880 D-Systems und/oder das Prüfen von Blöcken auf bestimmte Bytes.
- Vollgepufferte Adressen und Blocklängenregister, d. h. die Daten für die nächste Operation können geladen werden, ohne die momentanen Daten zu zerstören.
- Während eines Transfers wird eine Adresse für die Lese- und eine für die Schreiboperation erzeugt.
- Operationsmoden:
 - 1-Byte-Übertragung (Es wird 1 Byte pro BUSRQ-Anforderung übertragen.)
 - Peripheriegesteuerte Operation "burst" (Die Operation läuft, solange die Peripherie das Ready-Signal aktiv hält.)
 - Programmgesteuerte Operation "continuous" (Die Operation läuft, bis ein Block mit im Programm festgelegter Länge abgearbeitet ist.)
- Interrupte nach
 - Blockende
 - Auffinden eines gesuchten Bytes
 - Ready aktiv programmierbar
- Eine vollständig ausgeführte Operation kann automatisch oder auf Befehl wiederholt werden ("Auto restart" oder "Load")
- Das Zeitverhalten der Tore ist programmierbar. (Anpassung an die Geschwindigkeit angeschlossener peripherer Geräte)
- Der DMA-Kanal kann softwaremäßig freigegeben, gesperrt oder rückgesetzt werden.
- Prioritätskaskadierung der Bausteine bei mehreren DMA-Kanälen
- Suchraten bis zu 2 MByte sind möglich
- Der Schaltkreis kann ohne Unterbrechung des Transfers signalisieren, daß eine bestimmte Anzahl von Bytes übertragen worden ist.

Anschlußbelegung und Schaltungskurzzeichen

A5 1	40 A6	35 - DO	A0 6
A4 2	39 A7	34 ⊶ D7	A1 - 5
A3 [3]	38 IEI	33 ⊶ D2	A2 <u></u>
A2 4	37 INT	32 ~ D3	A3∞3
A1 [5]	36 IEO	31 ⊶ D4	A4 2
A0 🛅	35 DO	29 · D5	A5 <u> </u>
c 📆	34 D1	28 ⊶D6	A6 40
WR 8	33 D2	27 ⊶ D7	A7 → 39
RD 9	32 D3	8	A8 24
IORQ 10	31 D4	9	A9 → 23
Ucc [#]	30] U _{SS}	10 ~\IORQ	A 10 → 22
MREQ 12	29 D5	12 ⊶ MREQ	A11 21
BAO 13	28 D6	15 ⊶ BUSRQ	A12 20
BAI 14	27 D7	7 ~ − C	A13 19
BUSRQ 15	26 MT	26 ~ M1	A14-0 18
CS/WAIT[16	25 RDY	16 ⊶ CS/WAIT	A 75 -0 17
A 15 177	24 A8	38 ⊶ <i>IEI</i>	IEO 36
A14 18	23 A9	14	BA0 → 13
A13 19	22 A10	25 ~ RDY	INT 37
A12 200	21 A11		
			

Grenzwerte	(Bezugspotential	Uss	= 0 V
------------	------------------	-----	-------

		min	max	
Betriebsspannung	U_{CC}	-0,5	7	٧
Eingangsspannung	U _I	0,5	7	V
Lagerungstemperatur-		– 55	125	°C
bereich	arthetastg			
Verlustleistung	PV		1,1	I W

Statische Kennwerte (θ_a = 0 . . . 70 °C; U_{CC} = 5 V \pm 0,25 V; U_{SS} = 0 V)

		Meßbedingungen		min	mo	X
Eingangsspannung LOW	U_{IL}			-0 ,5	0,8	3 V
Eingangsspannung HIGH	UIH			2,0	UCC	. V
Ausgangsspannung LOW	UOL	IOL	= 1,8 mA		0,4	l V
Ausgangsspannung HIGH	UOH	IOH	$= 250 \mu A$	2,4		V
Stromaufnahme	ICC				200	mΑ
Eingangsreststrom	ILI	U	= 0 V U	CC	10	μΑ

Dynamische Kennwerte (θ_a = 0 . . . 70 °C; U_{CC} = 5 V \pm 0,25 V; C_L = 100 pF)

IIA OFO D		min	max	
UA 858 D Taktperiode High-Breite des Taktes Low-Breite des Taktes Anstiegs- und Abfallzeit des Taktes	^t a ^t w(CH) ^t w(CL) ^t r, ^t f	250 110 110	4 000 2 000 2 000 30	ns ns ns
UB 858 D Taktperiode High-Breite des Taktes Low-Breite des Taktes Anstiegs- und Abfallzeit des Taktes	t _c tw(CH) tw(CL) t _r , t _f	400 180 180	1) 2 000 2 000 30	ns ns ns

1)
$$t_c = t_{w(CH)} + t_{w(CL)} + t_r + t_f$$