
SY 200...SY 210 SY 220...SY 230

Silizium-Gleichrichterdioden für Ströme bis 1 A

ELEKTRISCHE EIGENSCHAFTEN

		SY 200 SY 220	SY 201 SY 221	SY 202 SY 222	SY 203 SY 223	
Nennsperrspannung	ÛRN	75	100	200	300	V
Sperrgleichspannung	UR 11	75	100	200	300	V
Periodische Spitzensperrspannung	ÛRP	100	130	260	390	V
Stoßsponnung	ÛRS 2)	110	150	300	450	٧
		5Y 204 SY 224	SY 205 SY 225	5Y 206 SY 226	SY 207 SY 227	
	ORN	400	500	600	700	V
	UR	400	500	600	700	٧
	DRP	520	650	780	910	V
	ÛRS	600	750	900	1050	٧
		SY 208 SY 228	SY 210 SY 230			
	ÛRN	800	1000	Operation of	5934	٧
	UR	800	1000			V
	ÛRP	1040	1300	acops.		V
	ÛRS	1200	1500			V

Durchlaßspannung

UF 3)

≤ 1.2

SY 200 ... SY 210 SY 220 ... SY 230

Schleusenspannung	Us 4)	ca. 0,8 V	
Nenndurchlaßstrom	IFN 5) R-Last	0,7 A	
	C-Lost	0,6 A	
Dauergrenzstrom	IFM 4)	2 A	
Periodischer Spitzendurchlaßstrom	ÎFP 7)	8 A	
StoBstrom	ÎFS 0)	40 (50) A	
Grenzstromintegral	0 %	8 (12,5) A ² s	
Sperrstrom	(R 10)	≤ 0,15 mA	
Differentieller Durchlaßwiderstand	(F 11)	ca. 70 mΩ	
Nullpunktkapazität	Co 12)	ca. 50 pF	
THERMISCHE EIGENSCHAFTEN			
Gesamtwärmewiderstand	Rth	≤ 100 grd/W	
Betriebstemperaturbereich (Sperrschichttemperatur)		-40+150 °C	
MECHANISCHE EIGENSCHAFTEN			
Masse	co. 3	9	
Schwingungs- und Stoßfestigkeit	noch TGL 11 053, Bl. 1		
KLIMATISCHE EIGENSCHAFTEN			
Prüfklasse	546 nach TGL 9202, Bl. 1		
Lagerungs- und Transportbedingungen	noch TGL 11 053, Bl. 1		
ALLGEMEINE TECHNISCHE FORDERUNG	EN, PRUFUNG, LIEFERU	NG	
	nach TGL 11 053, BI		

Bestellbezeichnung einer Silizium-Gleichrichterdiode mit einer Nennspannung von UR = 100 V, wobei die Katode am Gehäuse liegt.

SY 200 ... SY 210 SY 220 ... SY 230

ERLAUTERUNGEN

- Gleichspannung, die in Sperrichtung an der Gleichrichterdiode liegen darf.
- Maximale Dauer 10 ms; als Betriebswert oder in mehrfach aneinander anschließender Wiederholung nicht zulässig.
- Bei 1 A Gleichstrom; Umgebungstemperatur (Kühllufttemperatur) = 45 °C.
- 4) Gehäusetemperatur 100 °C.
- Umgebungstemperatur (Kühllufttemperatur) #a = 45 °C. Bei h\u00f6heren Umgebungstemperaturen Stromreduzierung entsprechend den Belastungsdiagrammen.

Bei Ladekondensator ist ein Schutzwiderstand vorzuschalten (5 Ω \pm 10%; 12 W bei Netzbetrieb 220 V). Ladekondensator \leq 200 μ F.

- 6) Höchster, dauernd zulässiger Durchlaßstrommittelwert bei sinusförmigen Stromhalbwellen von 50 Hz, wobei die Pause zwischen den Stromhalbwellen 10 ms betrögt: Gehäusetemperatur 100 °C. Bei Betrieb mit Dauergrenzstrom ist eine Überlastung nicht zulässig.
- 7) Frequenz 50 Hz.
- 8) Einzelner Stromimpuls in Form einen Sinushalbwelle bei 50 Hz und einer Sperrschichttemperatur von ca. 120°C; als Betriebswert oder in mehrfach aneinander anschließender Wiederholung nicht zulässig; danach erforderliche Betriebspause mindestens 1 min; Klammerwert aus dem Leerlauf, Sperrschichttemperatur ca. 45°C.
- 9) Überlastungszeit 10 ms, Bedingung wie in 8).

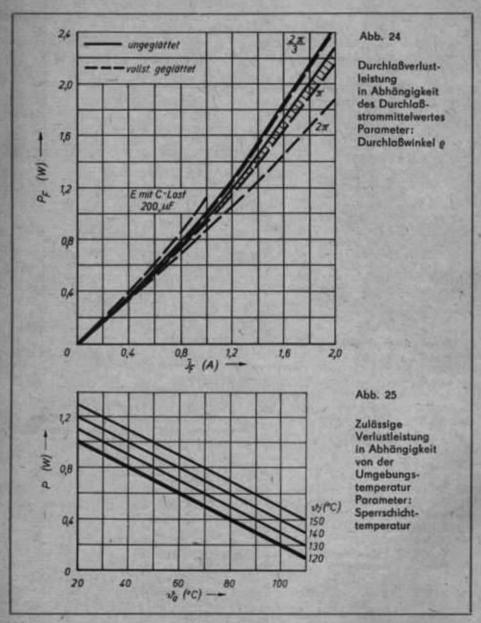
- 10) Sperrgleichspannung nach 1); Sperrschichttemperatur 120 °C.
- 11) Gehäusetemperatur 100 °C.
- 12) Me8frequenz 1 kHz.

BIEGEBEANSPRUCHUNG UND LOTEN DER ANSCHLUSSDRÄHTE

Biegen:

Die Anschlußdrähte dürfen ab 3 mm vom Gehöuse bzw. vom Durchführungsröhrchen entfernt gebogen werden. Dabei müssen die Anschlußdrähte zwischen dem Gehäuse bzw. dem Durchführungsröhrchen und der Biegestelle mit einem geeigneten Werkzeug festgehalten werden, um die Diode vor Biege- und Zugbeanspruchung zu schützen. (Abb. 27).

Löten:


Beim Löten der Anschlußdrähte der Gleichrichterdiode dürfen nachstehende Löttemperaturen und Lötzeiten nicht überschritten werden:

Bei Kolbenlötung bis zu 250 °C max 4 Sekunden

Bei Tauchlötung bis zu 250 °C max 4 Sekunden

Bei Tauchlötung bis zu 350 °C max 2 Sekunden

Zwischen Lötstelle und Gehäuse bzw. Durchführungsröhrchen muß ein Abstand von mindestens 3 mm eingehalten werden.

SY 200 ... SY 210 SY 220 ... SY 230

EINBAU UND WARTUNG

Die Gleichrichterdioden können an den Anschlußdrähten in den Leitungszug der Schaltung freihängend eingelötet oder auf Leiterplatten stehend oder liegend tauchgelötet werden. Dabei dürfen die Dioden direkt auf der Leiterplatte aufliegen.

Zur Erreichung eines höheren Durchlaßstromes kann die Diode mittels Befestigungsschelle auf ein Kühlblech montiert werden. Mit einem Kühlblech von $20 \times 20 \times 1.5$ mm³ ist ein Durchlaßstrom von $I_P = 1$ A zulässig.

Beim Einordnen der Dioden in die Schaltung ist därauf zu achten, daß diese nicht durch benachbarte, wärmeabgebende Teile (Widerstände, Röhren, Trafos usw.) aufgeheizt werden.

Die Gleichrichterdioden müssen gegen Spritz- und Tropfwasser geschützt und bei Verschmutzung gereinigt werden, damit die Isolationsfestigkeit gewährleistet ist. Eine weltere Wartung ist nicht erforderlich.

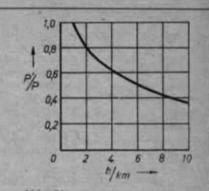


Abb. 26

Reduzierung der Verlustleistung bei Aufstellhöhen über 100 m

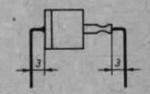


Abb. 27

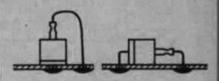


Abb. 28

Abb. 29

Einbau der Dioden auf Leiterplatten



Abb. 30

Einbau der Dioden auf Kühlblechen mit Befestigungsschelle