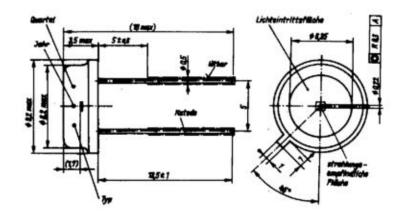


Information

SP 114 2/88 (13)


Hersteller: VEB Werk für Fernsehelektronik Berlin

Lawinenfotodiode

Die SP 114 ist eine kleinflächige Lawinenfotodiode, gefertigt als Fotodiode in Epitaxie-Planar-Technologie. Das Gehäuse ist aus Metall-Glas.

Die Diode zeichnet sich durch eine rauscharme Signalverstärkung im HF-Bereich aus und ist für kleinund großflächige Einstrahlung durch ein Planglasfenster konzipiert.

Einsatzgebiete sind die Meß-, Steuer- und Regelungstechnik für den Nachweis hochfrequenter optischer Signale geringer Intensität.

Masse: 0,8 g

Bild 1: Maßbild SP 114

Grenzwerte

	Kurzzeichen	min.	max	·.	Einheit
Verlustleistung	P _{trn} .	-	100)	mW
v _a = 25 °C					
Sperrschicht-		9			0
temperatur	₽;	-	125	5	°C
Betriebstempe- raturbereich	a a	-15	. 5	5	ос
Lagerungstempe- raturbereich					
über eine Zeit von einem Monat	9.	-25	71	n	°C
And Study Would	stg	-27		0 .	Ü
Kenngrößen (♣ = 25 °C))				
9	Kurzzeichen	min.	typ.	max.	Einheit
Dunkelsperrstrom	I _{RO}	· -	1	5	nA
$E_e = 0.1x$					
Multiplikation					
M = 100					
Multiplikations-	м	100	200	_ 11	
faktor	, m	100	200	₩	
$\lambda_{p} = 1 \text{ nA}$ $\lambda_{p} = 850 \text{ nm}^{1}$	Y				
Äquivalente Rausch- leistung	NEP	-	10-14	_	WHz-1/2
R _L = 100 kOhm					
M = 50 .					
f = 1 kHz			5		
Impulsanstiegszeit	t _r	-	200	-	ps
$R_L = 50 \text{ Ohm}$	90				
$\lambda_p = 850 \text{ nm}$	220				
Spektrale Empfind- lichkeit	G.	0,3	0,4	_	A/W
U _R = 10 V	_S λ'	0,,,	0,1		.,,
$\lambda_{\rm p}$ = 850 nm ¹	*				
Gesamtkapazität	C _{tot}	Α.	2	-	pF
$E_e = 0.1x$					
f = 1 MHz					
U _R = 100 V		**			
Temperatur-					
koeffizient der Betriebsspannung	тк _{ив}	-	+0,4		%/K
M = 100					
In = 1 nA					

3

Fortsetzung

	Kurzzeichen	min.	typ.	max.	Einheit
Serienwiderstand f = 1 MHz	Rs	-	100	-	Ohm
$U_B = 0 V$ $E_e = 0 1x$					
Betriebsspannung M = 100	ucc	140	_	300	V
$I_p = 1 \text{ nA}$ $\lambda_p = 850 \text{ nm}^{1}$		36			
Verstärkungs- Bandbreite-				8	
produkt λ = 850 nm	VBP .	-	200	200	GHz

¹⁾ Bestrahlung großflächig

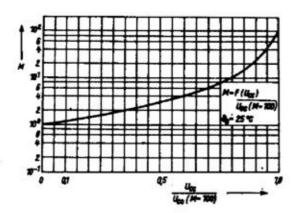


Bild 2: Abhängigkeit des Multiplikationsfaktors von der Betriebsspannung

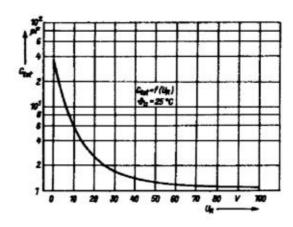


Bild 3: Mittlere Abhängigkeit der Gesamtkapazität von der Sperrspannung

Herausgeber:

veb applikationszentrum elektronik berlin im veb kombinat mikroelektronik

Mainzer Straße 25

Berlin, 1035

Telefon: 5 80 05 21, Telex: 011 2981 011 3055

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Änderungen im Sinne des technischen Fortschritts sind vorbehalten.