
Ausgabe: November 1957

### OC 816 p-n-p-Flächentransistor In Vorbereitung



#### Verwendung:

Der Transistor OC 816 ist geeignet für Endstufen kleiner Leistung, für Vorverstärkerstufen und Treiberstufen für Gegentaktendverstärker, z. B. für 2 OC 821.

#### Kennwerte:

Emitterschaltung gemessen bei

$$\theta \alpha = 25^{\circ} \text{ C}; \quad -\text{U}_{\text{CE}} = 6 \text{ V} \quad -\text{J}_{\text{C}} = 2 \text{ mA}; \quad f = 1 \text{ kHz}$$
Kurzschluß-Eingangswiderstand  $h'_{11} = 0,4 \cdots 2 \text{ k}\Omega$ 
Leerlauf-Spannungsrückwirkung  $h'_{12} = 4 \cdots 25 \cdot 10^{-4}$ 
Kurzschluß-Stromverstärkung  $h'_{21} = 20 \cdots 100^{1}$ )
Leerlauf-Ausgangsleitwert  $h'_{22} = 20 \cdots 150 \text{ }\mu\text{S}$ 
Leistungsverstärkung  $G' = 32 \cdots 45 \text{ }d\text{B}$ 
(bei  $-\text{U}_{\text{CE}} = 6 \text{ V}; -\text{J}_{\text{C}} = 1 \text{ mA}; \quad R_{\text{L}} = 50 \text{ k}\Omega$ )
Rauschfaktor  $F < 25 \text{ }d\text{B}$ 
(bei  $-\text{U}_{\text{CE}} = 1 \text{ V}; -\text{J}_{\text{C}} = 1 \text{ mA}; \quad R_{\text{g}} = 500 \Omega, \quad f = 1 \text{ kHz}$ )
Grenzfrequenz  $f \alpha > 300 \text{ kHz}$ 
(gemessen in Basisschaltung bei  $-\text{U}_{\text{CB}} = 6 \text{ V}; -\text{J}_{\text{C}} = 2 \text{ mA}$ )

1) s. Seite 2

Ausgabe: November 1957

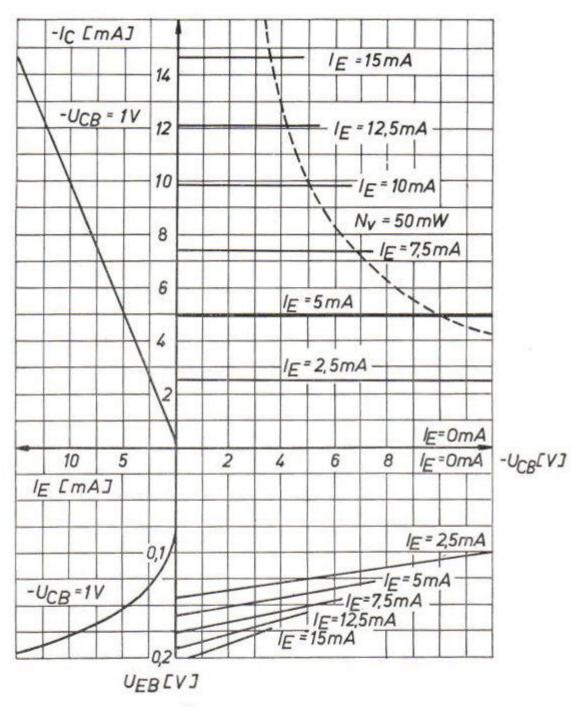
### OC 816 p-n-p-Flächentransistor In Vorbereitung

### Maximalwerte:

### Kollektorreststrom

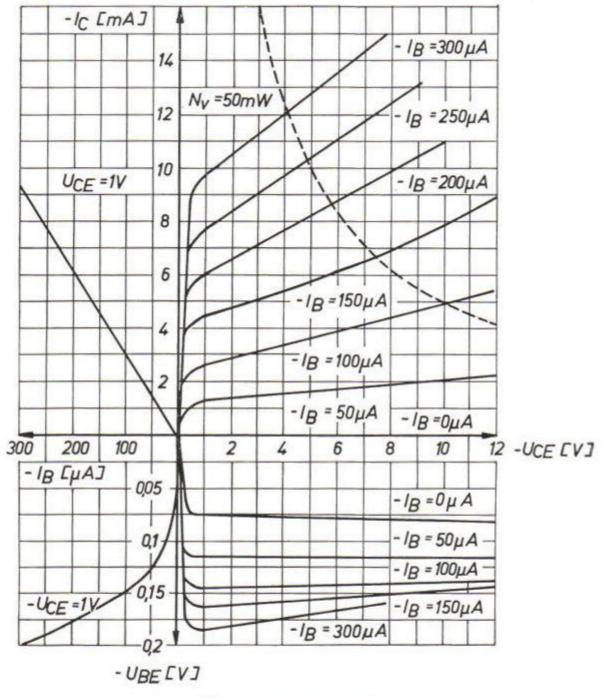
| bei — $U_{CB}=6\ V\ J_E=0$ :   | — Jco                | ≤ 20                         | $\mu A$  |
|--------------------------------|----------------------|------------------------------|----------|
| bei – $U_{CE} = 6 V J_B = 0$ : | — J'co               | $\leq 400$                   | $\mu A$  |
| Kollektorrestspannung          |                      |                              |          |
| bei $-J_c = 10  \text{mA}$     | - UR                 | ≤ 0,3                        | V        |
| Kollektorspannung              | - U <sub>CEmax</sub> | = 10                         | V        |
| Kollektorspitzenspannung       | - UCEsp              | = 15                         | V        |
| Kollektorstrom                 | — J <sub>cmax</sub>  | = 20                         | mA       |
| Kollektorspitzenstrom          | — J <sub>csp</sub>   | = 50                         | mA       |
| Verlustleistung                | $N_{vmax}$           | = 50                         | $mW^2$ ) |
| Sperrschichttemperatur         | $\theta_{j_{max}}$   | = 65°                        | С        |
| Wärmewiderstand                | ж                    | $= 0.4^{\circ}  \text{C/mW}$ |          |
| Temperaturbereich              | A cc                 | = -40.                       | + 65° C  |

1) Farbkennzeichnung


<sup>2</sup>) Gesamte im Transistor auftretende Verlustleistung (Emitter- und Kollektorverlustleistung).

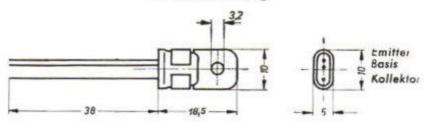
Sie ist abhängig von der Umgebungstemperatur.

s. Bl. OC 816 Seite 5.


Ausgabe: November 1957

OC 816
p-n-p-Flächentransistor
In Vorbereitung
Kennlinienfeld in Basisschaltung




Ausgabe: November 1957

OC 816
p-n-p-Flächentransistor
In Vorbeitung
Kennlinienfeld in Emitterschaltung



Ausgabe: November 1957

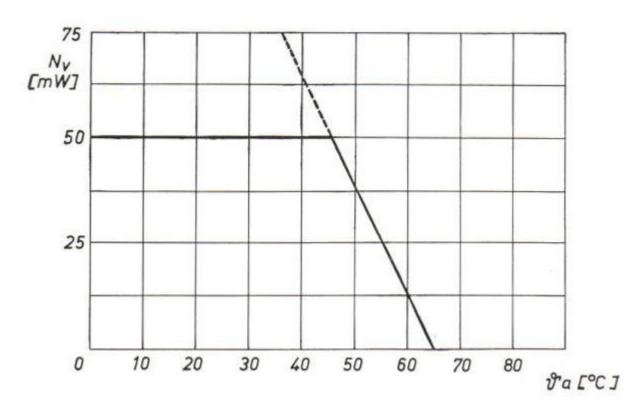




### Verwendung:

Der Transistor OC 820 ist geeignet für Endstufen mittlerer Leistung, in Treiberstufen für Gegentaktendstufen, sowie als Oszillator für mittlere Leistungen.

#### Kennwerte:

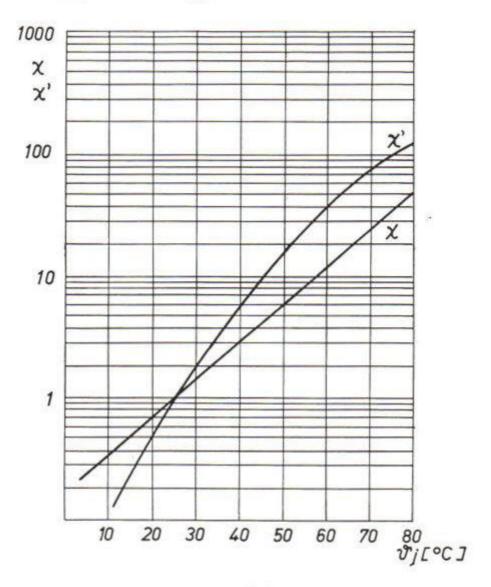

Emitterschaltung; gemessen bei  $\vartheta \alpha = 25^{\circ}$  C

#### Basisstrom

Ausgabe: November 1957

OC 815; OC 816 p-n-p-Flächentransistoren In Vorbereitung

Abhängigkeit der Verlustleistung  $N_v$  von der Umgebungstemperatur  $\vartheta_\alpha$ 




$$\begin{split} N_v &= N_E + N_C = 50 \text{ mW maximal} \\ \vartheta_j &= 65^\circ \text{ C} \\ \varkappa &= \frac{\vartheta_j - \vartheta_\alpha}{N_v} = 0.4 \frac{{}^\circ \text{ C}}{\text{mW}} = \text{konst.} \end{split}$$

Ausgabe: November 1957

OC 815; OC 816 p-n-p-Flächentransistoren In Vorbereitung

Temperaturabhängigkeit des Kollektorreststromes



$$\chi = \frac{(J_{co})_{\vartheta_{j}}}{(J_{co})_{\vartheta_{j}} = 25^{\circ} C}$$

$$\chi' = \frac{(J'_{co})_{\vartheta_{j}}}{(J'_{co})_{\vartheta_{j}} = 25^{\circ} C}$$