(Mhnlich V 4035 D)

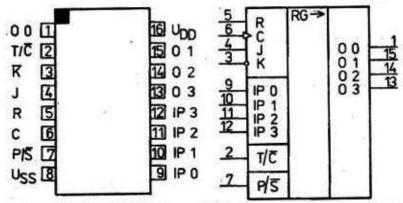


Bild 7: Anschlußbelegung und Schaltungskurzseichen K 561 IR 9

Bezeichnung der Anschlüsse:

1	0 0	Ausgang 0	- 9	IP 0	Paralleleingang 0
2	7/C	Steuereingang True Complement	10	IP 1	Paralleleingang 1
3	K	Steuereingang K	- 11	IP 2	Paralleleingang 2
4	J	Steuereingang J	12	IP 3	Paralleleingang 3
5	R	Rücksetzeingung	13	0 3	Ausgang 3
6	C	Takteingang	14	0 2	Ausgang 2
7	P/S	Eingang parallel/seriell	15	0 1	Ausgang 1
8	USS	Bezugspotential	16	u _{DD}	Betriebsspannung

Der K 561 IR 9 beinhaltet ein vierstufiges. getaktetes, serielles Schieberegister mit synchron auf die Stufen wirkenden parallelen Ringungen sowie einen über JK-Logik auf die erste Stufe wirkenden seriellen Eingang. Wenn der Steuereingang P/S (parallel/ seriell) den Zustand L besitzt, werden die Registerstufen 2, 3 und 4 in serieller Be-Triebsart hintereinander geschaltet. Hat der Steuereingang P/S den Zustand H, dann sind die Paralleleingänge zu den Registerstufen durchgeschaltet. In beiden Betriebsarten erfolgt die Informationsübernahme mit der L/H-Flanke des Taktsignals.

Wenn der Steuereingang T/C den Zustand H besitzt, ist der wahre Registerinhalt an 0 3 der komplementäre Registerinhalt.

den Ausgängen 0 0 ... 0 3 verfügbar. Ist T/C im Zustand L, liegt an den Ausgängen 0 0 bis Über den Bingang R lassen sich alle Registerstufen gemeinsam rücksetzen.

Eir	gän	ge		Registerausgang zu		
J	ĸ	R	O .	t _m Q 1	t _{m+1} Q 1	
L	×	L	L/H-Flanke	L	L	
H	x	L	L/H-Flanke	r	H	
x	L	L	L/H-Flanke	H	L	
H	L	L	L/H-Flanke	Q 1	Q1	
x	H	L	L/H-Planke	H	н	
x	*	L	H/L-Flanke	Q 1	Q 1	
x	x	H	x	x	L	

(x = L oder H)

Die Steuerfunktion des T/C-Einganges erfolgt asynchron mit dem Taktsignal.

Werden der J- und K-Eingang der ersten Registerstufen miteinander verbunden, wird die erste Stufe zum D-Trigger.

Grenzwerte

Kennwert	Kurzzeichen	min.	max.	Einheit			
Betriebsspannung	u _{DD}	-0,5	15	٧			
Ringangsspannung	UT	-0,2	UDD + 0,2+				
Ringangsatron	I,		10	mA			
Verlustleistung bei & = 25 °C	Ptot	4	150	mW			
Verlustleistung je Ausgangstransistor	Ptot	1 2 3	100	n¥			
				_			

Statische Kennwerte

Kennwert	Kurz- seichen	Meßbedingungen	min.	max,	Einhei
Betriebsspannung	UDD		3	15	٧
Stromaufnahme	IDD	U _{DD} = 15 V; U _{IL} = 0 V; U _{IH} = 15 V; J _a = 25 °C		20	/MA
		U _{DD} = 15 V; U _{IL} = 0 V; U _{IH} = 15 V; \hat{v}_{a} = 445 °C		20	/UA
		U _{DD} = 15 V; U _{IL} = 0 V; U _{IH} = 15 V; T _A = 85 °C		200	/UA
Ringangsreststrom	III	U _{DD} = 15 V; U _{IL} = 0 V; U _{IR} = 15 V; T _a = 25 °C		0,3	/m
		U _{DD} = 15 V; U _{IL} = 0 V; U _{IH} = 15 V; θ_a = -45 °C		0,3	/UA
		U _{DD} = 15 V; U _{IL} = 0 V; U _{IH} = 15 V; V _A = 85 °C		1	,isa
Ausgangsspannung L	n ^{or}	U _{DD} = 10 V; U _{IL} = 0 V; U _{IH} = 10 V		0,05	Y
		U _{DD} = 5 V; U _{IL} = 0 V; U _{IH} = 5 V		0,05	٧
Áusgangsspannung H	UOH	U _{DD} = 10 V; U _{IL} = 0 V; U _{IH} = 10 V	9,95		Y
		U _{DD} = 5 V; U _{IL} = 0 V; U _{IH} = 5 V	4,95		٧
Ausgangsstrom L	IOF	U _{DD} = 10 V; U _{IL} = 0 V; U _{IH} = 10 V; U _{OL} = 0,5 V;	0,85		mA.
. **		θ _a = 25 °C U _{DD} = 10 V; U _{TL} = 0 V;	1,05		mA.
		U _{IH} = 10 V; U _{OL} = 0,5 V; V _A = -45 °C			
1.2		U _{DD} = 10 V; U _{IL} = 0 V; U _{TH} = 10 V; U _{OL} = 0,5 V;	0,59		mA
	40.00	ਹੈ = 85 °C	1		
		U _{DD} = 5 V; U _{IL} = 0 V; U _{IH} = 5 V; U _{IL} = 0,5 V;	0,35	-	30.0
		υ _{DD} = 25 °C υ _{DD} = 5 V; υ _{IL} = 0 V; υ _{IH} = 5 V; υ _{OL} = 0,5 V; ϑ _a = -45 °C	0,43		= 4
		$U_{DD} = 5 \text{ V}; U_{IL} = 0 \text{ V};$ $U_{IH} = 5 \text{ V}; U_{OL} = 0,5 \text{ V};$ $\widehat{V}_{a} = 85 \text{ °C}$	0,24		MÅ.
Ausgangsstrom H	IOH	U _{DD} = 10 V; U _{IL} = 0 V; U _{IH} = 10 V; U _{OH} = 9,5 V; U _a = 25 °C	0,6		mA .
		U _{DD} = 10 V; U _{IL} = 0 V; U _{IH} = 10 V; U _{OH} = 9,5 V; U _A = -45 °C	0,72		mA
		U _{DD} = 10 V; U _{IL} = 0 V; U _{IH} = 10 V; U _{OH} = 9,5 V; D _a = 85 °C	0,415		=4

Kennwert	Kurs- zeichen	Meßbedingungen	min.	mex.	Einhei
Ausgangsstrom H	IOH	U _{DD} = 5 V; U _{IH} = 5 V; U _{IL} = 0 V; U _{OH} = 4,5 V; ϑ_{a} = 25 °C	0,25		-
		U _{DD} = 5 V; U _{IH} = 5 V; U _{IL} = 0 V; U _{OH} = 4,5 V; S _a = -45 °C	0,3	1	=4
		U _{DD} = 5 V; U _{IH} = 5 V; U _{IL} = 0 V; U _{OH} = 4,5 V; O _A = 85 °C	0,175		mi
Ausgangsspannung L bei kritischer	a ^{OT}	$U_{DD} = 10$ V; $U_{IH} = 7,0$ V; $U_{IL} = 3,0$ V; $\mathcal{S}_{a} = 25$ °C	-	.1	Y
Eingengespannung		U _{DD} = 10. V; U _{IH} = 7,1 V; U _{IL} = 3,0 V; \mathcal{T}_a = -45 °C		1	
		U _{DD} = 10 V; U _{IH} = 7.0 V; U _{IL} = 2.9 V; $\hat{\nabla}_{a}$ = 85 °C	į.	1	٧
		$U_{DD} = 5 Y; U_{IH} = 3,5 \; Y;$ $U_{IL} = 1,5 \; Y; \; \mathcal{T}_{a} = 25 \; ^{\circ}C$		0,8	٧.
		U _{DD} = 5 V; U _{IH} = 3,6 V; U _{IL} = 1,5 V; \mathcal{O}_{a} = -45. °C		0,8	٧.
		U _{DD} = 5 V; U _{IH} = 3,5 V; U _{IL} = 1,4 V; S = 85 °C		0,8	٧
Ausgangsspannung H bei kritischer.	рон	U _{DD} = 10 V; U _{IH} = 7,0 V; U _{IL} = 3,0 V; V _a = 25 °C	9 .		٧
Bingangsspannung		U _{DB} = 10 V; U _{IH} = 7,1 V; U _{IL} = 3,0 V; T _a = -45 °C	9		7
		U _{DD} = 10 V; U _{IH} = 7,0 V; U _{IL} = 2,9 V; \mathcal{G}_{R} = 85 °C	9		٧.
		U _{DD} = 5 V; U _{IH} = 3,5 V; U _{IL} = 1,5 V; T _B = 25 °C	4,2		7
		U _{DD} = 5 V; U _{IR} = 3,6 V; U _{TC} = 1,5 V; ϑ_a = -45 °C	4,2		٧
		V _{DD} = 5 Y; V _{IH} = 3,5 Y; V _{IL} = 1,4 Y; Y _a = 85 °C	4,2	9	₹

Dynamische Kennwerte ($\sigma_{L} = 50 \text{ pF}; U_{IH} = U_{DD}; \sigma_{IL} = U_{SS}$)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einheit
Flankenseiten des	t _{HL} ;	V _{DD} = 10 V	100	5	/us
Taktsignals	t _{LH}	U _{DD} = 5 V		5 15	148
Setzzeit der JK-	tsJK	UDD = 10 V	200		ns
Binglinge		UDD = 5 V	500	-	ne
Takt- und RESET-	tw	UDD = 10 V	175	-	ns
Impulsbreite		Upp = 5 V	400		ns
Verzögerungszeit	t _{PLH}	Unn = 10 V; 3 = 25 °C		235	ns
		Unn = 10 V; 0 = -45 °C		235	ns
		UDD = 10 V; T = 85 °C		330	n.s
		UDD = 5 V; 7 = 25 °C	4	650	ns
	1 20 1	UDD = 5 V; 0 = -45 °C		650	ns
		UDD - 5 V; J - 85 °C	1	910	ns
Verzögerungszeit	t _{PHL}	UDD = 10 V; 8 = 25 °C		360	ns
	100	UDD = 10 V; 9 = -45 °C	93	360	ns
		UDD = 10 V; & = 85 °C		500	ns
	1	UDD = 5 V; 0 = 25 °C		800	ns
		UDD = 5 VI Va = -45 °0	1	800	ns
		UDD = 5 V; 0 = 85 °C		1100	ns
Eingangskapasität	o _I			10	p P