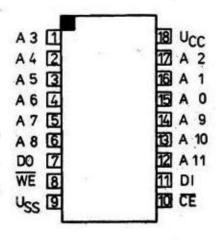


Information


4K x 1 statischer RAM KR537 RU 2A 1/87 (10)

Herstellerland: UdSSR

Übersetzung, bearb.

Der integrierte Schaltkreis KR 537 RU 2 A ist ein statischer Schreib-Lese-Speicher (RAM) mit wahlfreiem Zugriff in der Organisation 4096 x 1 bit.

Er wird in CMOS-Technologie hergestellt und befindet sich in einem 18poligen DIL-Gehäuse. Der Schaltkreis ist für den Einsatz in Datenverarbeitungsanlagen bestimmt.

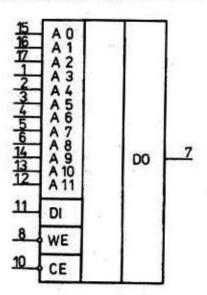


Bild 1: Anschlußbelegung und Schaltungskursseichen

Bezeichnung der Anschlüsse:

1	A 3	ZeilenadreSeingang	10	CE	Freigabesignal (Chip enable)
2	A 4	ZeilenadreSeingang	11	DI	Dateneingang
3	A 5	Zeilenadreßeingang	12	A 11	SpaltenadreSeingang
4	A 6	SpaltenadreSeingang	13	A 10	SpaltenadreSeingang
5	A 7	SpaltenadreBeingang	14	A 9	Spaltenadreseingang
6	A 8	SpaltenadreSeingang	15	A 0	ZeilenadreSeingang
7	DO	Datenausgang	16	A 1	ZeilenadreSeingang
8	WE	Bingang Schreiben	17	A 2	ZeilenadreSeingang
9	USS	Bezugspotential	18	UCC	Betriebsspannung

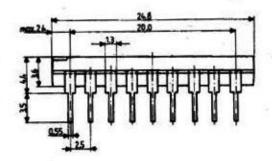


Bild 2: Gehäuseabmessungen

Kursbeschreibung

- 4k RAM in der Organisation von 4096 x 1 bit

- CMOS-Technologie, U_{CC} = 5 V Zykluszeit Lesen: t_{RC} = 500 ns Zykluszeit Schreiben: t_{WC} = 500 ns
- statische Betriebsweise, daher kein Auffrischen der Information
- tristate-Ausgang
- getrennter Datenein- und -ausgang
- zerstörungsfreies Lesen
- einfache Kapazitätserweiterung durch Chipauswahleingang

Betriebsart	Eingänge			Ausgang	
	CE	WE	DI	00	
Standby	1	x	×	۰.	
Lesen	0	1	x	0 oder 1	
Schreiben 0	0	0	0	0.0	
Schreiben 1	0	0	1	D-0 .	

Tabelle 1: Wahrheitstabelle KR 537 RU 2 A

Beschreibung

Der KR 537 RU 2 A ist ein statischer RAM in CMOS-Technologie in der Organisation 4096 x 1 bit. Der KR 537 RU 2 A befindet sich in einem 18poligen DIL-Plastgehäuse mit 2,5 mm Raster und 10 mm Reihenabstand. Den inneren Aufbau des Schaltkreises enthält das Blockschaltbild (Bild 3).

Über die Adresseneingänge A 0 ... A 5 wird über den Zeilendekoder und über die Adresseneingänge A 6 ... A 11 über den Spaltendekoder der Speicherplatz in der Speichermatrix angewählt. Der KR 537 RU 2 A besitzt einen L-aktiven Steuereingang für die Chipaktivierung CE und einen L-aktiven Steuereingang VE für Einschreiben in den RAM.

Über die Steuereingänge werden in Verbindung mit dem Dateneingang DI die 4 Betriebsarten des RAM eingestellt. Die Datenausgabe erfolgt über die Informationsausgabeeinheit an DO. In die Betriebsart "Ruhezustand" wird der Schaltkreis über die Chipaktivierung CE = H geschaltet. Unabhängig von der Belegung des Dateneinganges DI ist der Datenausgang in diesem Zustand hochohmig.

Aktiviert wird der Schaltkreis, indem die Chipaktivierung $\overline{\text{CE}} = \text{U}_{\text{IL}}$ wird. Über den zweiten Steuereingang $\overline{\text{WE}}$ wird für $\overline{\text{WE}} = \text{U}_{\text{IH}}$ der Schaltkreis in die Betriebsart "Lesen" geschaltet. Unabhängig von der Belegung des Dateneinganges DI wird die auf der angewählten Adresse abgespeicherte Information ausgegeben und erscheint am Datenausgang DO. In die Betriebsart "Schreiben" wird der Schaltkreis bei aktiviertem Schaltkreis ($\overline{\text{CE}} = \text{U}_{\text{IL}}$) durch den Steuereingang $\overline{\text{WE}} = \text{U}_{\text{IL}}$ geschaltet. In Abhängigkeit von der Belegung des Dateneinganges DI wird auf die ausgewählte Adresse O oder 1 geschrieben.

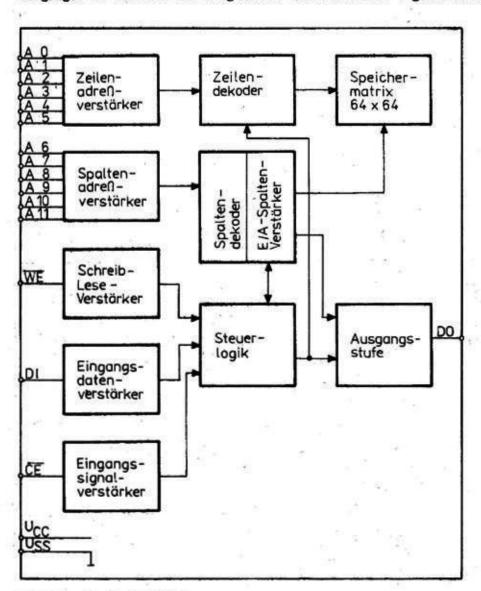


Bild 3: Blockschaltbild

Grenzwerte

Kennwert	Kursseichen	min.	max.	Binheit
Betriebsspannung	U _{CC}	-0,3	6	Y
Eingangsspannung	U _T	-0,3	U ₀₀ + 0,3	Y
Ausgangsstrom	10	1	10	mA
Lastkapazität	C _L		1000	pP

Statische Kennwerte

Kennwert	Kurz- zeichen	Meßbedingungen	min.	nex.	Einheit
Betriebsspannung	u _{cc}		4,5	5,5	v
Eingangsspannung H	UIH		3,6	Ugg + 0,3	Y
Eingangsspannung L	UIL		-0,3	1,1	V
Ausgangsspannung L	UOL	I _{OL} = 1,6 mA		0,4	V
Ausgangsspannung H	UOH	-I _{OH} = 1,2 mA	2,4	1477780	Y
Eingangssperrstrom	ILI	on the same of the		10	AUA
Ausgangssperrstrom	ILO	1167		10	ALL
dynamische Betriebs- stromaufnahme	ICCH	f = 1 MHz		10	"MA
Ruhestromaufnahme	Iccs	U _{CC} = 5 V	-	50	AUL

Dynamische Kennwerte

Kennwert	Kurz- zeichen	MeSbedingungen	min.	max.	Einheit
Zykluszeit Schreiben	two		500		ns
Zykluszeit Lesen	tRC		500	100	218
CE-Ein-Zeit	†CE	-	350	1 1	ns
Dauer des Schreibsign.	twp		t _{CE} + 20		ns
Adressenvorhaltezeit	tAC		20		ns
Schreibsignal-Vorhalte- zeit gegenüber Adresse	twee	X		tAC - 20	ns
CE-Pause	tcc	7	150	l .	20.0
CE-Zugriffszeit	tco		350		ns
Adressenzugriffszeit	*AGC	100	tco + tAC	1 1	ns
Ausgangsabschaltzeit	topp		35		ns
Eingangskapazität	CI.	7 = 25 °C	8	1	p.P
Ausgangskapazität	Co	€ = 25 °C	14		pF ·

Die Messung der dynamischen Kennwerte erfolgt bei einer TTL-Last, $C_{\rm L}$ = 50 pF und einem Pegel von 0,5 • $U_{\rm LH}$.

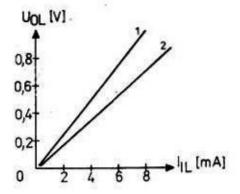


Bild 4: Typ. Abhängigkeit der L-Ausgangsspannung \mathbf{U}_{OL} vom Laststrom \mathbf{I}_{L}

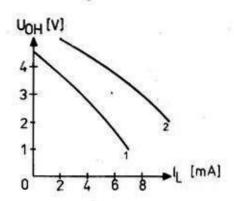


Bild 5: Typ. Abhängigkeit der H-Ausgangsspannung U_{OH} vom Laststrom I_L

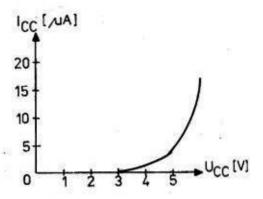


Bild 6: Typ. Abhängigkeit des Ruhestromes I_{CC} von der Betriebsspannung U_{CC}

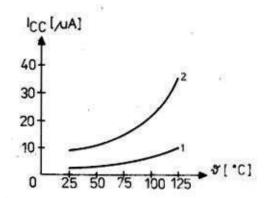


Bild 7: Typ. Abhängigkeit des Ruhestromes I_{CC} von der Temperatur

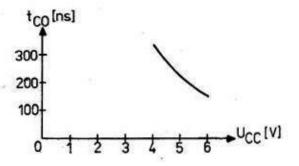
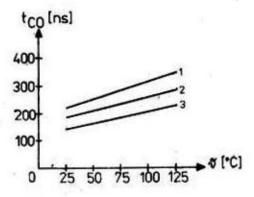
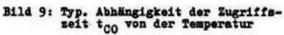




Bild 8: Typ. Abhängigkeit der Zugriffszeit \mathbf{t}_{CO} von der Betriebsspannung \mathbf{U}_{CC}

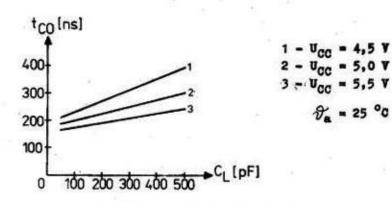
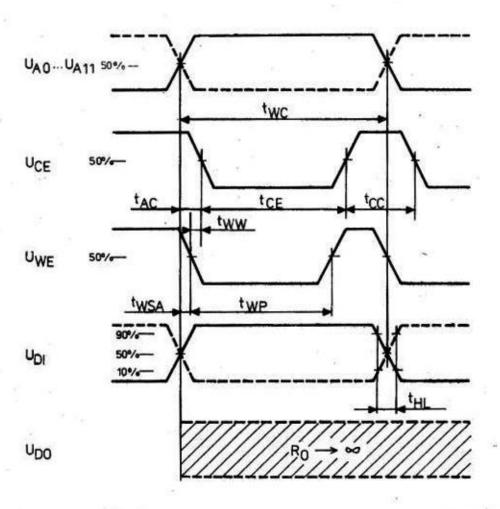
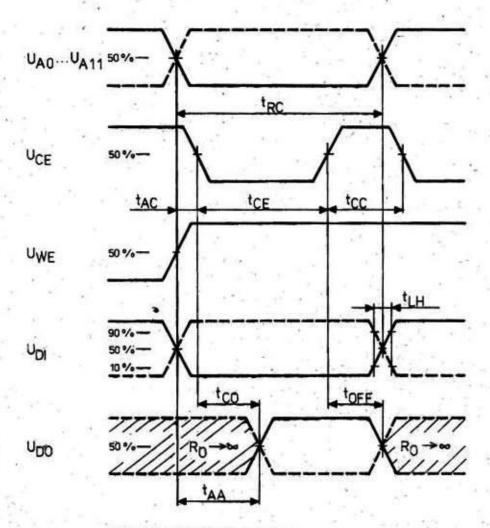




Bild 10: Typ. Abhängigkeit der Zugriffszeit t_{CO} von der Lastkapazität C_L

Alle Zeitintervalle der Eingangssignale werden bezogen auf den Pegel von 0,5 gemessen. Das Ausgangssignal wird bezogen auf die Pegel $U_{OL} \subseteq 0,4$ V bzw. $U_{OH} \ge 2,7$ V gemessen. R_O - Ausgangswiderstand

Bild 11: Impulsdiagramm Schreibsyklus

Alle Zeitintervalle der Bingagssignale werden bezogen auf den Pegel 0,5 gemessen. Das Ausgangssignal wird bezogen auf die Pegel $U_{\rm OL} \stackrel{<}{\sim} 0,4$ V bzw. $U_{\rm OH} \stackrel{>}{\sim} 2,7$ V gemessen. R_0 - Ausgangswiederstand

Bild 12: Impulsdiagramm Lesezyklus

Literatur

111	. Uslovia postavki integralnych mikroschem tipa KR 537 RU 2 A 09/85
111	
eng.	(Lieferbedingungen zum integrierten Schaltkreis KR 537 RU 2 A 09/85)

- /2/ Etiketka KR 537 RU 2 A (Kurzdatenblatt KR 537 RU 2 A)
- /3/ Intergralnye mikroschemy (zifrowye)
 Integrated circuits (digital), SU
 (Integrierte Schaltkreise, didigtal, Katalog SU)
- /4/ Katalog integralnych mikroschem (Katalog integrierte Schaltkreise)

Die vorliegenden Detenblätter dienen ausschließlich der Informetion! Es können deraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Anderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber:

veb applikationszentrum elektronik berlin imveb kombinet mikroelektronik

Mainzer Straße 25 Berlin 1035

Telefon: 5 80 05 21, Telex: 011 2981; 011 3055