GD 242

Germanium-pnp-Leistungs-Verwendung: transistor für Verstärker-Endstufen und als Paare für Gegentaktstufen im Niederfrequenz-Gebiet sowie für Schalteranwendung bis 48 V. Zulässige Umgebungstemperatur ∂a von -25 °C bis +65 °C

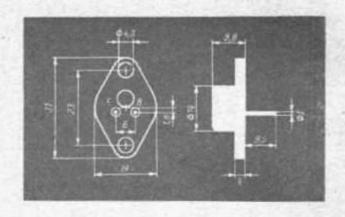
Standard: TGL 200-8240

Abmessungen: Bauform D 2, TGL 11 811

Masse ≈ 12 g

Zulässige Höchstwerte

= 20 V


für
$$\theta$$
a = 45 °C

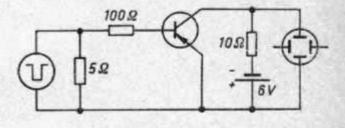
$$-lB = 0.6 A$$

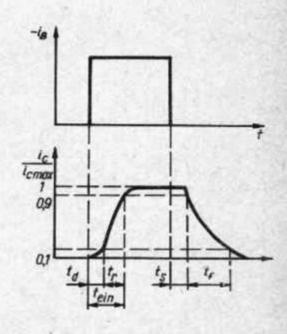
-lc = 3,0 A

bei RBE =
$$50 \Omega$$

Kennwerte für $\theta a = 25 \,^{\circ}\text{C} - 5 \,\text{grd}$

	Min	Тур	Max	Meßbedingungen	Strom- verstärkungs gruppen
Restström	e				
-ICBO -ICEO -ICEV -IEBO -ICES		35 μA 1 mA 0,06 mA 50 μA 0,5 mA	100 μA 3 mA 1 mA 500 μA 4 mA	-UCB = 6 V -UCE = 6 V -UCE = 30 V, -UBE = 1 V -UEB = 20 V -UCE = 50 V	
Ubergang	gsfrequenz				18.4
fr	450 kHz			-UCE = 6 V, -IC = 0,1 A	
Sättigung	sspannung				
-UCEsat		0,25 V	0,6 V	-lc = 3 A, -lB = 0,5 A	
Basis-Emi	tter-Spannu	ng			
-NSE		0,35 V 0,75 V	0,7 V 1,4 V	-IC = 0,5 A, -UCE = 6 V -IC = 2,0 A, -UCE = 2 V	
Gleichstro	mverstärkun	g			
B B B B B	40 20 29 45 68		35 55 80	-UCE = 6 V, -IC = 0,1 A -IC = 2 A, -UCE = 2 V	A B C D

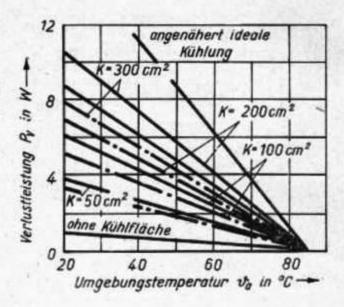

	Min	Тур	Max	Meßbedingungen	
B-Abfall		D'AR			
B _{2,0} B _{0,5}	0,5		-Ic = 2 A -Ic = 0,5 A -UcE = 2 V		
Pärchenb	edingungen				
IB1 IB2			1,2	-lc = 0,5 A, -UcE = 6 V -lc = 3 A, -UcE = 2 V	
UBE1 UBE2			1,2	-Ic = 3 A, -UcE = 2 V	


Die Schaltzeiten wurden mit folgender Meßschaltung ermittelt:

Schaltzeiten:

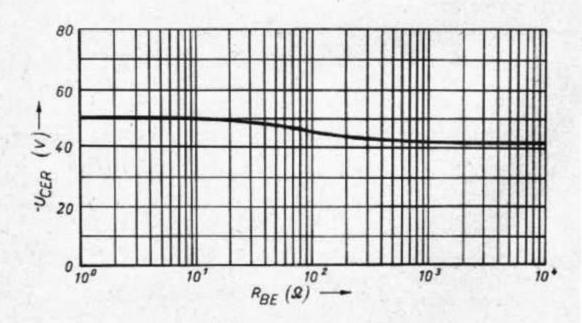
	Тур	Max	
tein	20 µs	40 µs	
ts	5 μs	10 µs	
tf	6 µs	12 μs	

Obersteuerungsfaktor m = 3

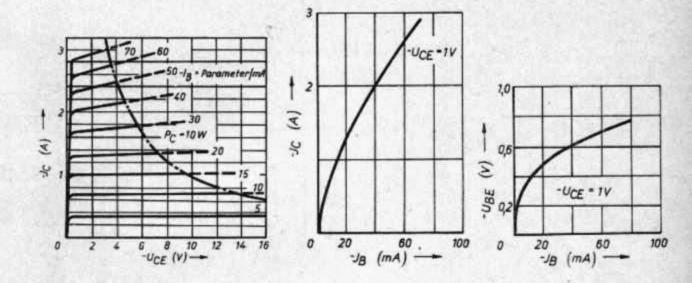


Bestellbeispiel für einen Transistor der Stromverstärkungsgruppe D

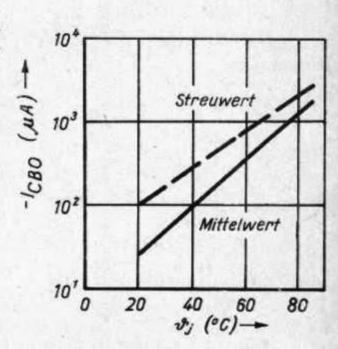
Transistor GD 242 D

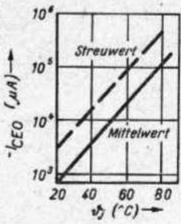

Maximale Verlustleistung als Funktion der Umgebungstemperatur θ a.

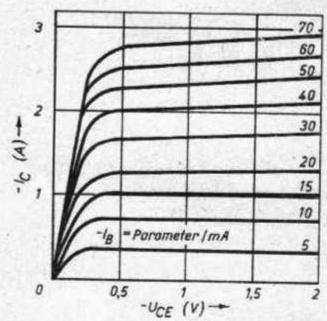
Montageart und Kühlfläche = Parameter. Die maximale Verlustleistung ist für den Grenzwert von R_{thl} = 4 grd/W ermittelt worden.



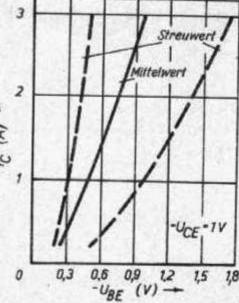
--- direkte Montage
--- isolierte Montage
K - Kühlfläche


Mittlere Kollektor-Emitter-Spannung als Funktion des äußeren Basis-Emitter-Widerstandes $\theta a = 45 \, ^{\circ} \text{C}$


Mittleres Kennlinienfeld für $\vartheta a = 25\,^{\circ}\text{C}$


Kollektor-Basis-Reststrom als Funktion der Sperrschichttemperatur für -UcB = 6 V

Kollektor-Emitter-Reststrom als Funktion der Sperrschichttemperatur für -UCE = 6 V


Ausgangskennlinien:

Kollektorstrom als Funktion der Basis-Emitter-Spannung

$$-IC = f (-UBE)$$

 $\theta a = 25 °C$

2

