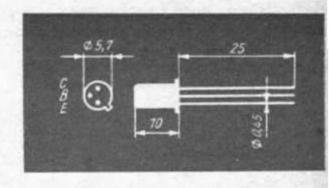
Verwendung: Niederfrequenz-Transistor mit hoher Spannungsfestigkeit, für Umgebungstemperaturen von -20 °C bis +65 °C

Standard: TGL 200-8393

Abmessungen: Bauform A 3/25b,

TGL 11 811 Masse ≈ 0,8 g


Zubehörteile siehe Seite 10

Zulässige Höchstwerte

für
$$\theta$$
a = 45 °C

bei RBE =
$$1 k\Omega$$
 $\theta_a = 65 ^{\circ}C$

Kennwerte für ∂a = 25 °C -5 grd

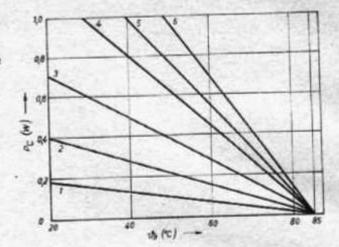
grd Wärmewiderstand Rth ≤ 0,38 mW Rthi ≤ 0,05 grd mW

	Min	Тур	Max	Meßbedingungen
Restströme				
-ICBO -IEBO -ICER		9 μA 12 μA	18 μA 50 μA 100 μA	-UCB = 15 V -UEB = 10 V -UCER = 66 V; RBE = 1 kΩ

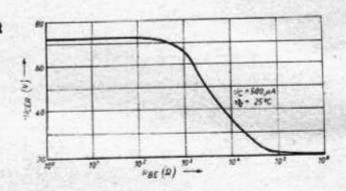
	25 1: (2.2)	
h21e	12 kHz	-UCE = 2 V, IC = 10 mA

Gleichstromverstärkung

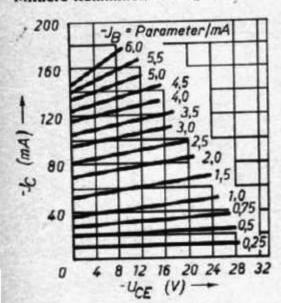
	18	35	-UCE = 0,5 V, -IC = 100 mA Stromverstärkungsgruppen
D	10	00	A
В	29	55	В
В	45	88	C
В	72	139	D

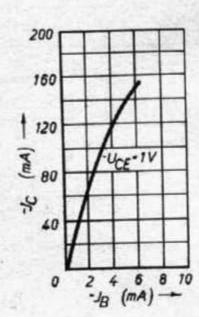

Stromverstärkungsabfall

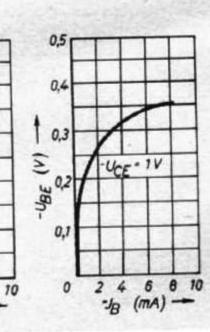
B100	10	B100 bei lc == 100 mA	
B250	1,3	B ₂₅₀ bei Ic = 250 mA	

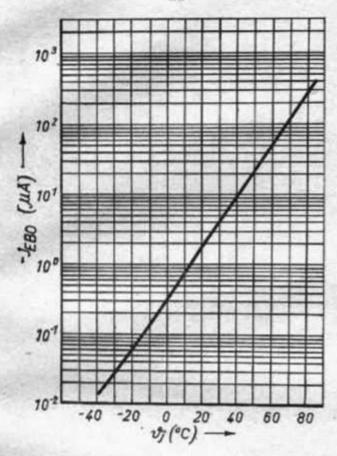

Bestellbeispiel für einen Transistor mit der Stromverstärkungsgruppe B Transistor GC 123 B Kühlschelle: Bestell-Nr. 5801.031-02003

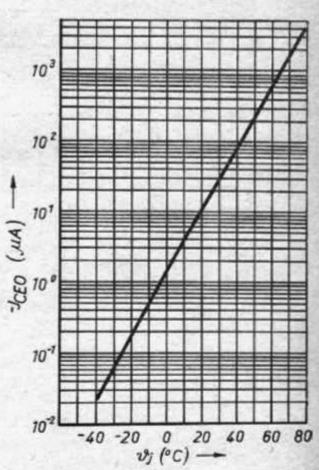
Verlustleistung in Abhängigkeit von der Umgebungstemperatur ∂a bei verschiedenen Al-Kühlblechgrößen von 2 mm Stärke (vertikale Montage, Blech ungeschwärzt)

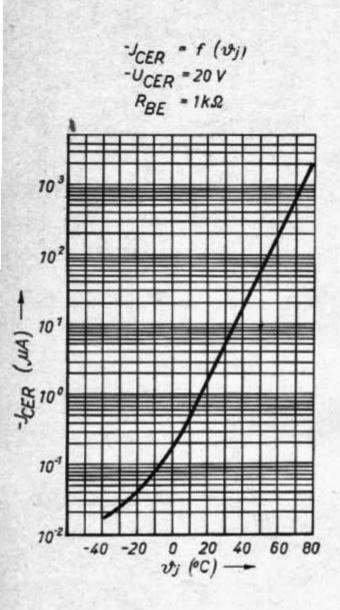

- 1 freitragend
- 2 mit Kühlschelle
- 3, 4 und 5 Kühlfläche
- 6 ideale Wärmeableitung

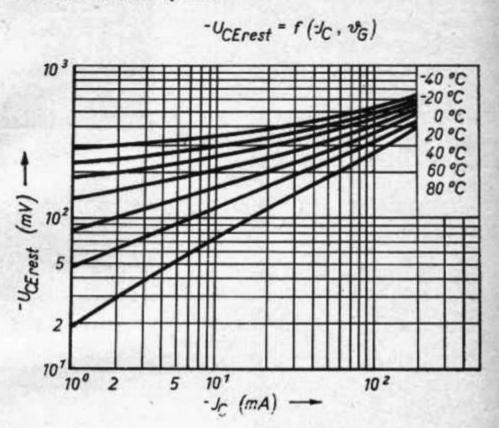



Kollektor-Emitter-Spannung in Abhängigkeit vom Basisabschlußwiderstand


Mittlere Kennlinien für $\theta_a=25\,^{\circ}\mathrm{C}$




Emitter-Basis-Reststrom als Funktion der Sperrschichttemperatur


Kollektor-Emitter-Reststrom als Funktion der Sperrschichttemperatur

Kollektor-Emitter-Reststrom als Funktion der Sperrschichttemperatur

Kollektor-Emitter-Restspannung als Funktion des Kollektorstromes und der Gehäusetemperatur

