

Übersichtsschaltplan

Bauform: DIP-18, Plast (Bild 6)

Bezeichi	nung	der	Ansc	nluss	e
			* ** ** *	***	

1	ASYNCHRON-READY (ARDY)	10	Sytemtakt (CLK)
2	SYNCHRON-READY (SRDY)	11	RESET-Eingang (RES)
3	SYNCHRON-READY-Freigabe (SRDYEN)	12	RESET-Ausgang (RESET)
4	READY	13	Peripherer Takt (PCLK)
. 5	Externer Frequenz-Eingang (EFI)	14	nicht belegt (n.c.)
6	Frequenz-/Quarz-Auswahl (F/C)	15	STATUS-Eingang (SO)
7	Quarzanschluß (X1)	16	STATUS-Eingang (SI)
8	Quarzanschluß (X2)	17	ASYCHRON-READY-Freigabe
9	Masse (M)		(ARDYEN)
		18	Betriebsspannung

Der Schaltkreis DS 80612 DC erzeugt die Takt-, Ready- und Reset-Signale für 16 Bit Prozessoren und deren Hilfskomponenten. Hauptbestandteile des Schaltkreises sind der quarzgesteuerte Oszillator, der Taktgenerator mit MOS-kompatiblen Ausgangssignalen, die Ready-Synchronisation und die System-Reset-Generierung.

Grenzwerte

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Spannung am An- schluß U _{CC}	UCC	0	7	V
Eingangsspannung	UI		5,5	V
Spannung an den Aus- gängen	UO	-0,5	5,5	V
Eingangsgleichstrom	-I _I		10	mA
Verlustleistung	Ptot		1,0	W

Statische Kennwerte (T_a = 0 bis 70 °C)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Ausgangsspannung High		$U_{CC} = 4,75 \text{ V},$ $U_{IL} = 0,8 \text{ V},$ $U_{IH} = 2,0 \text{ V},$				
Ausgänge RESET, PCLK	UOH	$-I_{OH} = 1.0 \text{ mA}$	2,4			V
Ausgang CLK	UOH	$-I_{OH} = 0.8 \text{ mA}$	4,0			V
Ausgangsspannung Low		$U_{\rm CC} = 4,75 \text{ V},$				
		$U_{IH} = 2,0 \text{ V},$				
		$U_{IL} = 0.8 \text{ V},$				
Ausgänge RESET, PCLK,	U _{OL}	$I_{OL} = 5 \text{ mA}$			0,45	V
CLK			1		Na 1777-20	
Ausgang READY	UOL	$I_{OL} = 7 \text{ mA}$			0,45	V
Flußspannung der	$^{-\mathrm{U}}\mathrm{_{IK}}$	$U_{\rm CC} = 4,75 \text{ V},$			1,0	V
Eingangsdiode ¹⁾		$-I_{IK} = 5 \text{ mA}$				1
Eingangsstrom High ¹⁾	IIH	$U_{CC} = 5,25 \text{ V},$			50	μA
1)	3	$U_{IH} = 5,5 \text{ V}$				
Eingangsstrom Low ¹⁾	-I _{IL}	$U_{\rm CC} = 5,25 \text{ V},$			0,5	mA
		$U_{\rm IL} = 0.45 \text{ V}$				
Stromaufnahme	I _{CC}	$U_{\rm CC} = 5,25 \text{ V}$			145	mA

1) alle Eingänge, außer X1 und X2 Dynamische Kennwerte $(U_{CC} = 5 \ V \pm 0.1 \ V, T_a = 25 \ ^{o}C - 5 \ K)$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten EFI→CLK Ausgang CLK,	t _{PHL}	$C_L = 150 pF$			35	ns
Anstiegszeit	t _{TLH}	$C_L = 150 \text{ pF}$			10	ns
Abfallzeit	t _{THL}	$C_L = 150 \text{ pF}$			10	ns
CLK→PCLK	tPLH	$R_{L} = 750 \text{ Ohm},$	0		45	ns
	t _{PHL}	$C_L = 75 \text{ pF}$	5		50	ns
CLK▶ RESET	t _{PLH}	$R_{L} = 750 \text{ Ohm},$	5		50	ns
	t _{PHL}	$C_L = 75 \text{ pF}$	5		50	ns
CLK→READY	t _{PLH}	$R_{L} = 910 \text{ Ohm},$	5			ns
	t _{PHL}	$C_L = 150 \text{ pF}$	0		33	ns