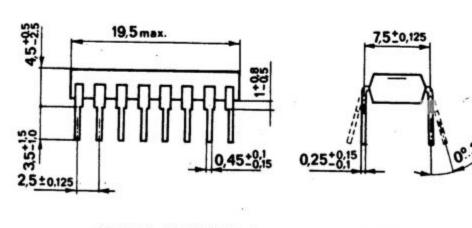
mikreektronik

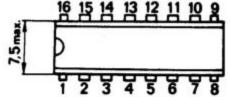
Information

DL 175 D

Vergleichstyp: SN 74 LS 175 N

1/85


vorläufige technische Daten


Hersteller: VEB Halbleiterwerk Frankfurt (Oder)

Vierfach D-FF DL 175 D

Gehäuse: 16poliges DIL - Plastgehäuse

Bauform: 21.1.1.2.16

21.1.1.2.16 TGL 26713

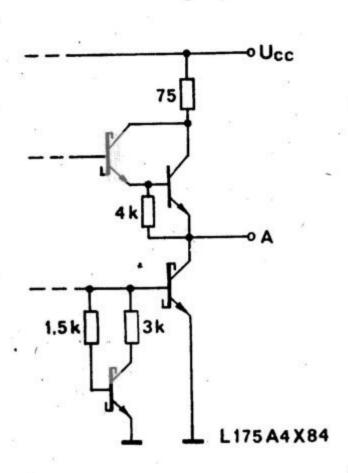
Anschlußbelegung:

D: Dateneingänge

T: Takteingang

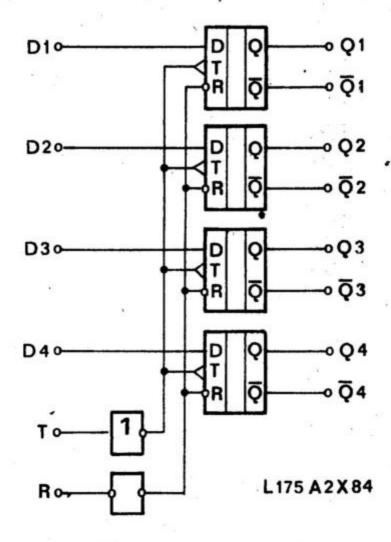
R: RESET-Eingang

Q: Ausgänge


Q: negierte Ausgänge

Schaltung eines D-FF:

Eingangsstufe


Ausgangsstufe

 $R_1 = 20 \text{ k}\Omega$ Norm für D-, Clear-Eingang

 $R_1 = 17 \text{ k}\Omega$ Norm für T-Eingang

Logisches Schaltbild:

Funktionsbeschreibung und logische Funktion:

DL 175 D - 4 D-FF mit gemeinsamen Rücksetzeingang, Q/Q-Ausgang

R	Т	D	Q	ā	
L	X	X	L	н	
н	1	н	н	L	↑ Cabaleflantes I II
Н	1	L	L	Н	↑ Schaltflanke L-H
н	L	X	Qo	Φo	

Das FF DL 175 D ist ein D-FF mit gemeinsamen Rücksetz- und Takteingang. Es schaltet mit der L-H-Flanke am Takteingang, d. h. die Information am D-Eingang wird mit diesem Impuls zum Ausgang Q übertragen.

 U_{cc}

min.

4,75

max.

5,25

Betriebsbeding	jungen:
----------------	---------

Betriebsspannung

Umgebungstemperatur	ϑ_{a}	0		70	°C
H-Ausgangsstrom	-I _{OH}			400	μΑ
L-Ausgangsstrom	I _{OL}	<i>3</i> 7		8	mA
Haltezeit	t _H	5		. ,	ns
Voreinstellzeit – D-Eingang – R-Eingang H	t _{su}	20 25		,	ns ns
Impulsbreite	tw	20			ns
H-Eingangsspannung	U _{IH}	2			V
L-Eingangsspannung	U _{IL}			8,0	٧
Statische Kennwerte (gültig für	$\vartheta_{\mathbf{a}} = 0 \dots 70 ^{\circ}\text{C}$):			
	a - a		min.	max.	
Eingangsclampingspannung $U_{CC} = 4,75 \text{ V}$ $I_1 = 18 \text{ mA}$		-U _{IK}		1,5	V
H-Ausgangsspannung $U_{CC} = 4,75 \text{ V}$ $U_{IL} = 0,8 \text{ V}$ $U_{IH} = 2 \text{ V}$ $I_{IH} = 400 \mu\text{A}$		U _{OH}	2,7		v
L-Ausgangsspannung		U _{OL}			
$U_{CC} = 4,75 \text{ V}$ $U_{IL} = 0,8 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $I_{OL} = 8 \text{ mA}$		2 6		0,5	٧
$I_{OL} = 4 \text{ mA}$				0,4	V
H-Eingangsstrom Eingänge R, D, T U _{cc} = 5,25 V	•	l _{IH}		20	μΑ
$U_{IH} = 2.7 \text{ V}$ $U_{IH} = 7.0 \text{ V}$		*		100	μΑ

			min.	max.	
		•		``	
L-Eingangsstrom Eingänge R, D, T U _{cc} = 5,25 V		-I _{IL}			
$U_{IL} = 0.4 \text{ V}$				360	μΑ
Ausgangskurzschlußstrom ¹) U _{CC} = 5,25 V		-l _{os}	20	100	mA
Stromaufnahme $U_{CC} = 5,25 \text{ V}$	¥3	I _{cc}		18	mA
alle Ausgänge offen D, R → 4,5 V vor Messung LH-Flanke an T					

¹⁾ Nicht mehr als 1 Ausgang gleichzeitig Prüfzeit < 1 s.

Dynamische Kennwerte (gültig für $\vartheta_a = 25 \, ^{\circ}\text{C} - 5 \, \text{K}$, $U_{\text{CC}} = 5 \, \text{V}$):

				min.	max.	
$R \rightarrow Q, \bar{Q}$			t _{pLH}			
$C_L = 50 pF$			ърсп		28	
$R_L = 500 \Omega$						
$R \rightarrow Q, \overline{Q}$	*		t_{pHL}		36	65
$T \rightarrow Q, \bar{Q}$			t _{pLH}		31	
T> Q, Q̄			t _{pHL}		33	9,
max. Taktfrequenz		7			-	2.20
max. Taktirequenz			$f_{\sf max}$	30	50	MHz