A 244 D

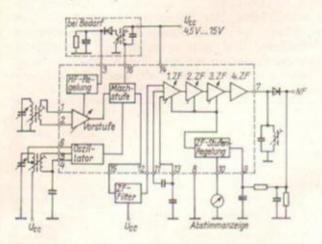
Integrierte AM-Empfängerschaltung für AM-Empfänger bis 30 MHz. Der Schaltkreis beinhaltet neben Vor-, Misch- und Oszillatorstufe einen vierstufigen ZF-Verstärker und zwei unabhängige Regelkreise. Neben der Regelung von drei Stufen des ZF-Verstärkers wird die Vorstufe geregelt, wodurch eine sehr gute Großsignalfestigkeit erreicht wird.

Bauform 5

Anschlußbelegung

1, 2 Eingang 3 Eingang HF-Regelung 4, 5, 6 Oszillator

7 ZF-Ausgang


8 Masse

Eingang ZF-Regelung

10 Ausgang Indikator 11, 12 ZF-Eingänge 13 Anschluß C 14 Betriebsspannung 15, 16 Mischerauspänge

Prenzwerte:		min	max	
Betriebsspannung	UCC	4,5	15	V
Betriebstemperaturbereich	Pa.	- 10	+ 70	*C
Logerungstemperaturbereich	Peta	- 40	+ 125	*C

Blockschaltung

Elektrische Kennwerte ($\theta_0 = 25^{\circ}\text{C} - 5 \text{ K}, \text{U}_{CC} = 9 \text{ V}, t_1 = 1 \text{ MHz},$ $\frac{\triangle t_1}{t_1} = 10^{-4}, t_{ZE} = 455 \text{ kHz}, t_m = 1 \text{ kHz}, m = 0.8)$

HF-Tell:					
Eingangswiderstand		min	typ		HOX
U2 - 0 V	Rose		3,4		kΩ
U ₂ == 0,4 V	Rose		4.2		kΩ
Mischer-Ausgangsimpedanz	ZOHF		420		kΩ
Mischer-Ausgangskopozitöt	COHE		4,2		pF
ZF-Tell:					
Regeleinsotrpunkt ¹)	UiReZF		140		μV
Regelumfang A UNF = 10 dB	∆A _{uZF}		60		d8
max. ZF-Eingangsspannung	-				
k == 10 %	UiZFmax		295		mV
2F-Eingangswiderstand	race encore				
U, - 0 V	RIZE		2,9		kΩ
U ₂ = 0.4 V	R _{(ZF}		3,4		RO.
Ausgongsimpedanz	ZOZF		160		kO
Ausgangskapazitöt	COZF		7,5		pF
Gesamtempfänger:					
Stromaufnahme UGOHF == 0 V	¹cc		11,9	16	mA
Regeleinsatzpunkt ^a)	URAHE		9		μV
Regelumlang Δ UNF = 10 dB	∆A _w		95		dB
Signal-Rauschabstand	1000				
UGOHF = 20 µV	S/N	24	31		dB
NF-Ausgangsspannung					
UGONE - 20 HV	UNF	60	120		mV
UGOHF = 500 mV	UNF	100	320	560	mV
Klirrfaktor					
UGOHF = 30 mV	k		2		%
UGOHF == 500 mV			2,3	10	%
Eingangsspannung für S/N == 2					
$R_{_{\rm O}} = 30~\Omega,~m = 0.3$	UHF		12,0		μV
max. Eingangsspannung k — 10 %	U _{IHF} max		1,5		٧

⁷ Als Regeleinsatzpunkt gilt die Eingangsspannung U₁ bei der

△ U₁ 10 dB

$$\frac{\triangle U_{NF}}{\triangle U_{NF}} = \frac{10 \text{ dB}}{3 \text{ dB}} \text{ tet.}$$